- stochastic theory
- стохастическая теория
Англо-русский словарь по исследованиям и ноу-хау. Е.Г. Коваленк. 2015.
Англо-русский словарь по исследованиям и ноу-хау. Е.Г. Коваленк. 2015.
Stochastic — (from the Greek Στόχος for aim or guess ) means random.A stochastic process is one whose behavior is non deterministic in that a state s next state is determined both by the process s predictable actions and by a random element. Stochastic crafts … Wikipedia
Stochastic control — is a subfield of control theory which deals with the existence of uncertainty in the data. The designer assumes, in a Bayesian probability driven fashion, that a random noise with known probability distribution affects the state evolution and the … Wikipedia
Stochastic optimization — (SO) methods are optimization algorithms which incorporate probabilistic (random) elements, either in the problem data (the objective function, the constraints, etc.), or in the algorithm itself (through random parameter values, random choices,… … Wikipedia
Stochastic dominance — is a form of stochastic ordering. The term is used in decision theory to refer to situations where one lottery (a probability distribution over outcomes) can be ranked as superior to another. It is based on preferences regarding outcomes (e.g.,… … Wikipedia
Stochastic calculus — is a branch of mathematics that operates on stochastic processes. It allows a consistent theory of integration to be defined for integrals of stochastic processes with respect to stochastic processes. It is used to model systems that behave… … Wikipedia
Stochastic gradient descent — is a general optimization algorithm, but is typically used to fit the parameters of a machine learning model.In standard (or batch ) gradient descent, the true gradient is used to update the parameters of the model. The true gradient is usually… … Wikipedia
Stochastic approximation — methods are a family of iterative stochastic optimization algorithms that attempt to find zeroes or extrema of functions which cannot be computed directly, but only estimated via noisy observations. The first, and prototypical, algorithms of this … Wikipedia
Stochastic partial differential equation — Stochastic partial differential equations (SPDEs) are similar to ordinary stochastic differential equations. They are essentially partial differential equations that have additional random terms. They can be exceedingly difficult to solve.… … Wikipedia
Stochastic process — A stochastic process, or sometimes random process, is the counterpart to a deterministic process (or deterministic system) in probability theory. Instead of dealing with only one possible reality of how the process might evolve under time (as is… … Wikipedia
Stochastic differential equation — A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, thus resulting in a solution which is itself a stochastic process. SDE are used to model diverse phenomena such as… … Wikipedia
Theory of conjoint measurement — The theory of conjoint measurement (also known as conjoint measurement or additive conjoint measurement) is a general, formal theory of continuous quantity. It was independently discovered by the French economist Gerard Debreu (1960) and by the… … Wikipedia